
A Model of Similarity: Metric In a Patch 

Yinon Nachshon1, Haim Cohen1,2 , Matania Ben-Artzi3* ,Anat Maril1,4* 

1Department of Cognitive Science, The Hebrew University of Jerusalem, Israel 

2 Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Israel 

3Department of Mathematics, The Hebrew University of Jerusalem, Israel 

4Department of Psychology, The Hebrew University of Jerusalem, Israel  

*As PhD advisors to the first author, Matania Ben-Artzi  and Anat Maril contributed equally to 

this work. 

 

Abstract 

We introduce a novel model of similarity. Following previous models, we espouse the metric 

approach, namely, (dis)similarity between objects is represented as distance. Unlike previous 

models, we incorporate a distinction between a long term memory (LTM)-like probability space 

that functions as a data-base, and a short term memory (STM)-like space in which similarity is 

calculated. STM in our model, is a manifold-like metric space, which contains only a subset of 

LTM at a time and changes constantly with respect to both its content and metric. On top of this 

structure of STM, we assume another discrete layer. This layer represents the limited sensitivity 

of our “measuring tools”, namely, our limited capability of distinguishing between similar 

objects. It results in a “pixalization” of STM representing limited resolution. We associate this 

seemingly shortcoming of STM to the very important function of abstraction. Finally, we show 

how probability (that exists in LTM) dictates varying concept representations and similarity in 

STM. 
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1. Scientific Background: Similarity Modelling 

1.1. Similarity modelling: Overview 

The psychological notion of similarity has been studied and modelled extensively over the past 

decades. Similarity underlies many aspects of our most basic daily activities and forms the basis 

for several higher cognitive functions, such as classification and abstraction. Every day, we 

encounter objects with which we are unfamiliar and, on the basis of the similarity of these 

objects to others with which we are familiar, we decide how to respond to them. For example, it 

is due to similarity that we are able to classify the large moving objects on the road as cars 

despite seeing each individual car for the first time. A successful model of similarity should 

provide an understanding and make predictions regarding all of the different functions that 

depend on similarity. The current research offers a novel model of similarity which, unlike 

previous models, allows for a representation’s dependence on different attributes to vary over 

time, as well as across psychological space. As detailed in the following sections, the proposed 

model successfully addresses the two major challenges facing any metric similarity model: (a) to 

be psychologically accurate and explanatory and (b) to account for violations of metric axioms (a 

major challenge for metric models of similarity). 

As suggested above, models of similarity typically refer to the notion of psychological space 

(e.g. Tenenbaum & Griffiths, 2001; Hahn, 2014; Nosofsky, 1992). An individual’s psychological 

space consists of all of the objects and concepts that the individual has come to know. Generally 

speaking, in metric models of similarity, the distance between objects in psychological space 

represents the dissimilarity of those objects (Shepard, 1987; Krumhansl, 1978; Tversky & 

Krantz, 1970; Borg & Groenen, 2005). Accordingly, an object is usually represented as a point in 

psychological space while a concept is represented as a subset of psychological space comprising 



all of the points that represent objects relevant to that concept. For example, the pen I hold in my 

hand (an object) is represented as a point, while the concept of a pen is represented as the set of 

points representing all possible pens. 

Several metric models of similarity can be found in the literature: (a) Euclidean models, in which 

the space is ℝ𝑛, an object is a point and dissimilarity is represented by Euclidean distance 

(Shepard, 1987); (b) Euclidean probabilistic models, in which objects are represented as sets of 

possible manifestations (with a probability density function attached to each one) and the 

dissimilarity between two objects is inversely proportional to the degree to which they overlap 

(Ashby & Townsend, 1986); (c) models of metric space with infinite dimensions (with a 

continuum cardinality), which have the advantage of being able to represent sets in the 

traditional finite dimensional psychological space as points and thus can be used to measure 

distances between sets (Townsend, Burns & Pei, 2013) and, finally, (d) models of psychological 

space as a manifold, which allow for varying contributions of attributes to the metric (Nosofsky, 

R. M. 1986)).  

Common to all these models is the idea that coordinates represent attributes and that an object is, 

therefore, represented solely by the values of its attributes. In some models, an attribute’s 

contribution to the metric, the attribute’s “weight,” may differ across different similarity 

judgments. 

1.1.1. The problem: Psychological accuracy versus mathematical correctness 

While the intuition underlying the modeling of (dis)similarity as a metric seems obvious, the 

application of a mathematical tool to such an abstract entity as psychological space is not at all 

trivial. As noted above, the primary difficulty with the metric approach in this context stems 



from the fact that violations of metric axioms appear to be involved in similarity judgment tasks 

(Laub, Müller, Wichmann & Macke, 2006; Medin, D. L., Goldstone, & Gentner, 1993; Tversky, 

1977; Tversky and Gati, 1982; Voorspoels et al., 2011; Yearsley et al., 2017; Jäkel et al., 2008; 

Aguilar & Medin, 1999). Before further considering this difficulty, we introduce the metric 

axioms below. 

Let x, y and z be points in a metric space, which is a set M together with a distance function 

𝑑:𝑀 𝑋 𝑀:→ ℝ obeying the metric axioms presented in Table 1:   

Table 1. Metric axioms and their psychological meanings. 

Axiom  Psychological Meaning 

𝒅(𝒙, 𝒚) ≥ 𝟎                           Non-negativity An object x can’t be more 
similar to object y than to 
itself 

𝒅(𝒙, 𝒚) = 𝒅(𝒚, 𝒙)              Symmetry An object x is similar to 
an object y exactly as 
much as the object y is 
similar to the object x. 

𝒅(𝒙, 𝒚) = 𝟎 ↔ 𝒙 = 𝒚              Identity of 
indiscernibles 

An object is identical only 
to itself. 

𝒅(𝒙, 𝒛) ≤ 𝒅(𝒙, 𝒚) + 𝒅(𝒚, 𝒛) Triangle inequality If x is similar to y and y is 
similar to z, then x and z 
cannot be very dissimilar. 

 

One major axiom violation that have been discussed in the literature involve the triangle-

inequality axiom; we illustrate it using the following well-known example that deals with 

concepts rather than objects, but, nevertheless, does demonstrate the main idea: Flame is similar 

to sun and sun is similar to ball but flame is not at all similar to ball. The second 



documented major axiom violation involves the symmetry axiom. For example, Cuba is similar 

to the USSR, since like the USSR used to be, Cuba is also Communist, but the opposite is not true 

due to the abundance of information about the USSR, which distinguishes it from Cuba (Tversky 

1977, Tversky & Gatti 1978, Tversky & Gatti 1981). We address both of these axiom violations 

below. A successful model of similarity ought to account for such violations while at the same 

time being psychologically accurate and explanatory.  

1.1.2. Our solution: A patch of scaled resolution 

The model of similarity proposed here successfully handles these challenges by assuming an 

ever-changing patch, which represents the psychological active subspace. This patch has two 

main properties, which we will later discuss in detail: a) finite resolution and b) a manifold-like 

structure. These two properties allow, respectively: a) taking into consideration the limited 

accuracy of our measuring tools (which has important consequences that we will discuss later) 

and b) varying dependence of representations (of objects) on attributes across the patch and over 

time. Varying representation over time is achieved by the continuous changing of the patch’s 

metric and content. That is, not only does the representation of objects vary over time, but the 

objects composing the set of reference vary as well. 

We believe that these ideas are in line with the psychological reality of an object's representation 

and, at the same time, provide a clear mathematical solution to various difficulties stemming 

from metric descriptions of the psychological space. We see attention as the mediator of the 

process of ‘translating’ context into a metric: Attention focused on the difference between two 



objects decreases their similarity. The resolution of the sub-space, in turn, heavily depends on the 

metric; greater distance between two objects increases their separability1.  

The idea that the representation of an object may vary over time means that representations are 

always context-dependent. For example, I see a lion in a cage at the zoo. In this context, the 

attributes that draw my attention may include the lion’s elegance, graceful gait and shiny fur. In 

other words, these are the attributes that are likely to contribute the most to my representation of 

the lion and, accordingly, to any similarity judgment involving the lion. But, suppose the cage 

suddenly breaks open. Now, the dominant attributes would most likely be quite different and 

include the lion’s speed, its strength and the sharpness of its teeth. These are also the attributes 

that will gain dominance in ‘calculating’ the lion’s similarity to other objects. (e.g., I do not 

know much about the speed of lions, but I do know that other big cats are very fast).  

With respect to variance in object representation across psychological space, we propose that the 

contribution of a given attribute to a representation (and, as a result, to similarity) differs for 

different objects across the psychological space. To continue with the example above, the speed 

of a bird flying in the sky would likely be much less relevant and draw less attention than the 

speed of the free-roaming lion. Thus, in this context, speed is an attribute that would influence 

similarity judgments involving the lion to a much greater degree than it would influence 

similarity judgments involving the bird. 

We assume that the metric changes continuously over time and across the patch. In general, this 

means that an attribute that is very important at Time 𝑡 for the representation of an object 𝐴 (and 

thus for the similarity of 𝐴 to other objects) will also be important, firstly, for other similar 

                                                           
1 In our view, as will be discussed later in this paper, diminished resolution is sometimes beneficial. 



objects, and secondly, for the object 𝐴 in temporal proximity to 𝑡 (a formalization of this 

assumption is presented later in this work).  

1.1.2.1. Advantages 

The principles of our model were discussed briefly in the introduction. These principles yield 

three main advantages for our model, as described in the sections below. 

a. Psychological accuracy 

Most metric similarity models use a flat metric space2. These models are not suitable for 

describing large portions of the psychological space, in which the identity of the attributes and 

even their number (which is interpreted as the dimension of the space) may vary. For example, 

many attributes that are relevant for the description of a face are irrelevant for the description of 

a pen. A model of varying representation overcomes this difficulty. 

Allowing, however, for variance in “dimension” across psychological space raises the problem 

of how to compute distance (i.e., dissimilarity) between objects that are represented by different 

numbers of attributes. For example, clothing adds a whole new set of attributes to a person’s 

appearance (thereby increasing the dimension), yet, when identifying a person, the relevant 

similarity judgment is between the person’s pre-established representation in psychological 

space, independent of any specific clothing, and the person in the real world, who happens to be 

clothed one way or another. In other words, the relevant similarity judgment involves a 

comparison between an object of lower dimension (the person irrespective of clothing) and an 

object of higher dimension (the person in particular clothing). 

                                                           
2 In our case, it can be described as a space across which the metric’s dependence on an attribute remains 
constant. 



Our model addresses this problem by allowing representations to vary over time. That is, we 

allow representations to be context-dependent. This is where diminished resolution becomes 

handy: In an effective process of identifying a person, the metric is not influenced by the 

clothing-related attributes. As a result, dimension is reduced by diminished resolution along the 

clothing-related attributes. The resultant space is ‘spanned’ by the person’s identification-

relevant attributes (e.g., the shape of the face). In other words, attributes relevant to the 

identification of the person gain dominance in the representation, while attributes related to 

clothing, being irrelevant to the task at hand, can be ignored. Note that difficulty ignoring 

clothing-related attributes may impair the identification task, which means that the diminished 

resolution here is functional.  

b. Similarity in varying levels of abstraction 

Note that the way our model accounts for tasks involving representations of different dimensions 

(like the identification task) is in line with the claim (discussed in detail below) that the 

distinction between objects and concepts in practice is not definite, but rather gradual. As such, 

we would like to be able to use the same mechanism to describe similarity for any level of 

abstraction. Scaled resolution allows us to do so. An evaluation of the similarity of different 

concepts uses the same mechanism, but with rougher resolution. 

c.  Accounting for metric-axiom violations 

As detailed below, another advantage of allowing varying representation over time in our model 

is that it provides a reasonable explanation for violations of metric axioms in similarity-judgment 

tasks. Note that (a) the very execution of a similarity judgment dictates the specific 

representation activated and (b) at any one definite point in time, metric axioms may hold with 

respect to a given patch, but (c) that patch changes with time. Given that metric axioms are 



applied to similarity judgments carried out at different times (e.g., sun–flame; sun–ball), 

violations of metric axioms that necessarily stem from rigid representations cease to exist when 

changing ad hoc representations are permitted.  

1.1.3. Patch: Justification  

In psychological research (Baddeley, & Warrington, 1970; Buchsbaum, Padmanabhan, and 

Berman, 2011; Corkin, 2002; Squire, 2009; Vallar & Baddeley, 1984; Warrington & Shallice, 

1969), memory is traditionally divided into long-term memory (LTM) and short-term memory 

(STM or working memory). The similarity model proposed here, assuming a patch characterized 

by specific content and metric, is essentially a model of an online active subspace of the 

psychological space, akin to STM3 (though the values of the so called “continual” attributes must 

be preserved in LTM). Previous models of similarity have not incorporated the STM — LTM 

distinction and, consequently, committed themselves to invariable representations compatible 

with LTM. While “continual” representations do exist only in LTM, we believe that STM (the 

patch mentioned above) is the primary locus for similarity judgments, which rely on temporary, 

incomplete and varying object representations and involve other resources (e.g., perception) 

besides LTM. We claim that similarity is not information about objects, but rather a momentary 

impression about relations between objects.  

1.1.3.1. Why a manifold? 

We argued above that metric and object representations in STM change continuously, over time 

and across the patch. The possibility of representing continuous change across space and time is 

                                                           
3 The terms STM and LTM as used here do not necessarily conform to the STM-LTM full characterization as 
analysed in the memory literature. Rather, they are used to express an active, transitory, limited-capacity subspace 
of the psychological space, akin to STM, and a relatively stable, long-lasting, (practically) infinite-capacity 
knowledge repository, akin to LTM. 



best served by a (suitable geometric object) manifold-like model. The continuity of change is 

important, to limit the flexibility of the model and produce predictions. 

To summarize, the core of our model of similarity involves a manifold-like, finite-resolution 

patch, which becomes possible when we consider a model of similarity in STM. A manifold-like 

structure allows for varying representation across the patch. The three main advantages of a 

patch model are that: (a) it is psychologically accurate, considering context and attention 

influences; (b) it is capable of describing similarity at varying levels of abstraction and (c) it 

avoids the problem of metric-axiom violations.  

We present the proposed model below, beginning with necessary definitions and a general 

description of similarity rules. We then move on to discuss the notion of finite resolution, which, 

together with varying representation, makes our model psychologically accurate. We then 

consider concept representation and similarity judgments at varying levels of abstraction. 

Finally, we discuss probability and classification. The issue of metric-axiom violations is 

discussed elsewhere (Nachshon, Cohen and Maril, 2022).  

2. The model: Overview 

2.1. Definitions 

We define an attribute relevant to a set 𝑆 of objects in some patch of the psychological space 

(such as STM) as a function 𝜑𝑖 from the set 𝑆 to the real line. This permits a full ordering of 

objects in S along this attribute. Namely, an attribute is a variable according to which objects can 

be ordered, which serves as a component in the description of the objects in this set. For 

example, for an attribute 𝑋, an object 𝐴 is more/equally/less 𝑋 than object 𝐵. In other words, an 

attribute comprises information that can be used to compare two objects (e.g., one tree is taller or 



greener than another). Note that an attribute defined in this way does not have to carry any 

objective or absolute (let alone physical) meaning.  

An ensemble of relevant attributes in a set 𝑆 of a semantic space induces a topology as the 

minimal (coarsest) topology for which all the relevant attributes are continuous, which is to say 

that two objects in S are “close” if and only if they are “close” in terms of every relevant 

attribute, meaning, if |𝜑𝑖(𝑥) − 𝜑𝑖(𝑦)| is small for every 𝑖. We say that an ensemble of n relevant 

attributes in a neighborhood around a point x is valid if the image of the function 𝑓: 𝑆 → ℝ𝑛 

defined as 𝑓(𝑥) = (𝜑1(𝑥), . . , 𝜑𝑛(𝑥)) contains an open set around 𝑓(𝑥).  

The dimension of a neighborhood around a point x in the set S is now (well) defined as the size 

of a valid ensemble of attributes, which means the smallest number of attributes needed to give a 

full description of this neighborhood. Note that 𝑓 defines the topology on S, so that if 𝑓 is a local 

homeomorphism between the neighborhood of 𝑥 and its image under 𝑓, then, locally, the set S 

will have the structure of a topological manifold.   

2.2. Manifold-like structure of STM: Intuition 

As noted above, our model is a model of similarity in STM. This section is dedicated to an 

intuitive discussion of this idea, which is followed by a more formal discussion in the following 

section.  

We look at STM as a limited-capacity space, which we call 𝑉(𝑡)4, and which holds at a certain 

time a set of concepts5 and a local metric (dissimilarity function). Both the set and the metric 

vary continuously over time. An illustration of the need for local settings would be as follows: 

                                                           
4 The finite capacity of STM is generally agreed upon. In our model, this is expressed by the finite volume of 𝑉(𝑡). 
5 A set of concepts from LTM alongside other resources (e.g., perception).  



Two rectangles drawn on a piece of paper may be similar because they are “close” in length, in 

width, in color, etc. Usually, we can tell how much each attribute affects similarity. However, a 

problem arises when we try to formulate a similarity rule that is more general than a mere 

collection of local similarities. As discussed above, different attributes are relevant at different 

places across 𝑉(𝑡), over time and to different extents and, therefore, the similarity rule changes 

accordingly. Here is where a manifold-based model becomes handy. Instead of relying on a 

global distance rule, in manifold-based models, we can calculate the length of small intervals 

using a local distance rule and we can then add up these distances to compute path lengths. The 

distance between two objects is then defined as the length of the shortest possible path between 

two points6. We argue that this is the way in which dissimilarity is evaluated. 

In addition, the limited capacity (finite volume) of 𝑉(𝑡) means that any attention paid to an 

attribute always comes at the expense of attention paid to other attributes and attention to certain 

semantic domains comes at the expense of attention that could be paid to other semantic 

domains. Below, we suggest a formal version of these general ideas. 

2.2.1. Similarity formalization and definitions: Metric manifold  

The topology of a semantic set was defined above (as the coarsest topology for which all of the 

attributes are continuous). Locally, the set with this topology has the structure of an n-

dimensional manifold (see page 9 above). As mentioned above, we define STM as a set we call 

𝑉(𝑡), which is the set of objects attended to at Time 𝑡, with the topology defined above. 𝑉(𝑡), 

then, is locally homeomorphic to ℝ𝑛 (for some 𝑛 ∈ ℕ) and, locally, has the structure of a 

topological manifold. For the sake of simplicity, we start by looking at 𝑉(𝑡) as having one 

                                                           
6 Note that a global metric defined in this manner obeys the metric axioms. 



coordinate system, in which each coordinate represents an attribute7. We assume that this set has 

a metric8 that represents dissimilarity. We further assume that 𝑉(𝑡) has the structure of a 

Riemannian manifold9. The general idea is as follows: Locally, a small neighborhood in 𝑉(𝑡)10 

around a point 𝑝𝜖𝑉(𝑡) can be approximated as a linear vector space (the tangent space at 𝑝) in 

which an inner product and thus a norm can be defined and, therefore, distances can be 

calculated. Let 𝑞 and 𝑝 be two points in 𝑉(𝑡) and let 𝑝 ∗ and 𝑞 ∗ be their respective coordinates 

𝑣 = 𝑞 ∗ −𝑝 ∗ where 𝑣 is an array of differences along attributes. The matrix 𝑔𝑝,𝑡11 , then, 

describes the similarity between 𝑝 and 𝑞 in the following way: For a sufficiently small |𝑣|, we 

get 𝑑(𝑝, 𝑞) ≈  √𝑔𝑝,𝑡(𝑣, 𝑣). Now, a length of a path 𝜃: (𝑎, 𝑏) → 𝑉(𝑡) can be approximated in the 

following way: For a sufficiently small 휀 > 0, we choose a set of points 𝑆 = (𝑝0, 𝑝1, … , 𝑝𝑙) 

along the path 𝜃 such that 𝑝𝑖 = 𝜃(휀 ∙ 𝑖), 𝑝 ∗𝑖 its representative coordinates and 𝑝 ∗𝑖+1= 𝑝 ∗𝑖+ 𝑣𝑖 . 

The approximated length of 𝜃 is given by ∑ √𝑔𝑝𝑖,𝑡(𝑣𝑖, 𝑣𝑖)
𝑙−1
𝑖=0 = ∑ 휀 ∙ √𝑔𝑝𝑖,𝑡(

𝑣𝑖 ,
𝑣𝑖)𝑙−1

𝑖=0 . The 

smaller 휀 gets, the more accurate the calculated path length, when for infinitesimal 휀 we get 

lim
→0

𝑣𝑖 = 𝜃′(휀 ∙ 𝑖) and a path length of ∫ √𝑔(𝜃(𝑠),𝑡)(𝜃′(𝑠), 𝜃′(𝑠))𝑑𝑠 
𝑏

𝑎
 for the (differentiable) 

                                                           
7 Namely, a single chart, therefore, the differentiability of 𝑉(𝑡) derives naturally from the differentiability of ℝ𝑛. 
8 Which is to say that similarity is not information about objects, but rather context-dependent. 
9 For now, we ignore singularities, that is, places where the dimension of 𝑉(𝑡) changes. As mentioned above, for 
convenience, we assume a single chart (a single coordinate system). Therefore, both the differentiability of paths 
and the tangent vector to a path in a point can be defined. 
10 For now, we ignore the dependence of similarity on time and concentrate on the metric at a certain moment in 
time within 𝑉(𝑡). 
11The matrix 𝑔 represents the inner product, which is a generalization of the dot product of two vectors 
 𝑣 = (𝑥1, 𝑦1), 𝑢 = (𝑥2, 𝑦2), 〈𝑣, 𝑢〉 = 〈(𝑥1, 𝑦1), (𝑥2, 𝑦2)〉 = 𝑥1 ∙ 𝑥2 + 𝑦1 ∙ 𝑦2 = |𝑣| ∙ |𝑢| ∙ 𝑐𝑜𝑠𝜃 where 𝑐𝑜𝑠𝜃 is the 
angle between the two vectors. The inner product induces a metric in the following way: 〈𝑢, 𝑢〉 = |𝑢|2 when |𝑢| is 
the norm (the ‘size’) of 𝑢. The distance between two close enough points, A and B, in an inner product vector 
space is now |𝐴 − 𝐵|. Note that the notion of an inner product exists in most of the metric models of similarity, as 
a measure of interdependence between two attributes (variables). 𝑔 is represented as a matrix, which in classic 
metric manifolds should be positive definite. As we shall see later, we allow the matrix to degenerate, but we do 
not allow negative eigenvalues, which means that any difference along an attribute can have only a positive effect 
on dissimilarity (g is positive semidefinite).  



path 𝜃: (𝑎, 𝑏) → 𝑉(𝑡)12, and the minimal path length between the two endpoints, 

min
𝜃
{∫ √𝑔(𝑝,𝑡)(𝜃′(𝑠), 𝜃′(𝑠))𝑑𝑠 

𝑏

𝑎
}, is the subjective dissimilarity between 𝜃(𝑎)and-𝜃(𝑏).  

We have then:  

 𝑑(𝑝, 𝑞) = min
𝜃:𝜃(𝑎)=𝑝 𝑎𝑛𝑑 𝜃(𝑏)=𝑞

{∫ √𝑔(𝑝,𝑡)(𝜃′(𝑠), 𝜃′(𝑠))𝑑𝑠 
𝑏

𝑎
}            (1) 

As we discussed above, 𝑉(𝑡) is a metric space, whose metric represents dissimilarity. We will 

now discuss the changes in 𝑉(𝑡) over time. To do so, we will first define a topology on 𝑉 =

⋃ 𝑉(𝑡) 
𝑡2
𝑡=𝑡1

 as a which is  as follows: a subset U of V is open, if and only if any projection of U 

on V(t) is open in V(t) and the projection of U on the time axis is open. In addition for(𝑝, 𝑡0) ∈ 𝑈 

there is 𝛿 > 0 such that for 𝑡 for which |𝑡 − 𝑡0| < 𝛿, there is an open neighborhood 𝑊𝑝(t) in V(t) 

of p such that   ⋃ 𝑊𝑝
𝑡+𝛿
𝑡=𝑡−𝛿  is also in U. With this topology, 𝑉 is locally homeomorphic to ℝ𝑛+1. 

Note that points (𝑝, 𝑡) in 𝑉 are events rather than objects. Several studies have shown that the 

similarity between events (𝑝1, 𝑡1) and (𝑝2, 𝑡2) depends also on the size of the time interval 𝑡2 −

𝑡1 between them (Day, Bartels 2004). Therefore, it is natural to define a metric 𝐺 in 𝑉, such that, 

when limited to 𝑡 = 𝑡0 we get the metric 𝑔𝑡0 in 𝑉(𝑡0)
13. Note that since we have 𝑉(𝑡) for 

every 𝑡, an event (p, 𝑡0) (an object p in 𝑉(𝑡0)  ) gives rise to a (smooth) curve 𝑃 in 𝑉, which 

                                                           

12 We can say then that √𝑔(�̅�,𝑡)(𝑣𝑖⃗⃗⃗  , 𝑣𝑖⃗⃗⃗  ) is the rate of change of the dissimilarity in the direction of the unit vector 𝑣  

at Time 𝑡 at Point 𝑝. In particular, √𝑔𝑖𝑖(𝑝,𝑡) = √𝑔(�̅�,𝑡)(𝑒𝑖, 𝑒𝑖) is the change in the dissimilarity in the direction of the 

attribute 𝑒𝑖. 
13 At a point (𝑝, 𝑡) for two vectors 𝑢, 𝑣 with zero projection on the time axis, 𝐺(𝑝,𝑡)(𝑢, 𝑣) = 𝑔(𝑝,𝑡)(𝑢, 𝑣). 



intersects any 𝑉(𝑡) at exactly one point, 𝑃(𝑡). The curves of the type 𝑃(𝑡)14carry the attributes 

of an object p as they vary in time (e.g. an object may change its color). 

Once we look at the set 𝑉 as a topological space, we add the assumption that the manifold V (t) 

and the metric g (t) vary smoothly in time. This enables us to regard the metric G, mentioned 

above, as a smooth metric on V.   

An attention-density function will be defined as:  

𝐴𝑑(𝑝, 𝑡) = √|𝑑𝑒𝑡 𝐺 (𝑝, 𝑡)|                                                                 (2) 

(which is the size of a volume element) for 𝑝 ∈ 𝑉. The consensus about finite attention load can 

thus be translated as ∬ 𝐴𝑑𝑡(𝑝)𝑑𝑝 ≤ 𝑀 < ∞
�̅�(𝑡)

, where 𝐴𝑑𝑡(𝑝) = 𝐴𝑑(𝑝, 𝑡). For the sake of 

simplicity, we will assume ∬ 𝐴𝑑(𝑝, 𝑡)𝑑𝑝 = 𝑣𝑜𝑙(𝑉(𝑡)) = 𝑐𝑜𝑛𝑠𝑡
�̅�(𝑡)

. The attention to a subset A 

of 𝑉(𝑡) will be-∬ 1 𝑑𝑥
𝐴

, meaning the volume of A in 𝑉(𝑡). 

2.3. Scale of resolution: Toward a concepts-as-points representation 

In this section, we introduce the notion of scaled resolution, which states that in some situations, 

not every two points can be distinguished. Scaled resolution expresses the fact that the ability to 

distinguish between two very similar, yet different, objects is limited. For example, when I look 

at a lion at the zoo, the lion is an object. It is an object in the sense that I know that the lion has a 

certain value for each and every one of the attended attributes. However, I do not know the exact 

values of these attributes. Better evaluation of attributes’ values requires effort. Another 

example: Sometimes I may mistakenly identify someone, at first glance, as a person whom I 

                                                           
14Any such curve is related to a specific object 



know. A closer look, however, may reveal that the person I know is actually taller, heavier, etc. 

In such a situation, it is my ‘measuring tools’ that are limited and not the space. 

Scaled resolution is necessary for two main reasons, which are discussed below in greater detail. 

The first is that finite resolution enables modelling of uncertainty in identification, a common 

psychological reality that must be taken into consideration in any model of similarity (e.g., it 

may underlie mental pathologies). The second reason involves the consideration of concepts as 

clusters of points, which allows for elegant modelling of the similarity between concepts in the 

very same manner in which the similarity between objects is modeled — as the distances 

between such clusters of points. It is also intuitively appealing: When we consider the extent of 

the similarity between wolves and dogs, we do not need to consider the dissimilarity between 

different dogs and the dissimilarity between different wolves, rather, we "compute the distance" 

between a wolf and a dog.   

In general, previous metric models of similarity are continuous and have no associated discrete 

structure. As such, they latently assume infinite resolution. The meaning of resolution in this 

context is the ability to distinguish between two different points (objects). In continuous models 

of similarity, every object is represented differently and, therefore, any two objects can be 

distinguished (Townsend, Burns & Pei, 2013; Nosofsky, R. M. 1986).  

Nevertheless, many similarity models ( F. G. Ashby and J. T. Townsend’s (1986); Nosofsky 

(1986);  Medin & Schaffer, 1978) espouse a probabilistic approach, which is in line with 

psychological reality (since there is often a level of uncertainty in object classification), but not 

in line with infinite resolution: If any two objects are distinguishable, no element of uncertainty 

should exist. Previous models of perception didn’t overlook the issue of discrimination between 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403834/#R11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403834/#R37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403834/#R37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403834/#R33


stimuli and also the discrimination- distance connection (Dzhafarov & Colonius 1999). 

However, they didn’t derive discreteness of the space from the distance- discrimination 

connection, nor did they apply this connection to semantics (or abstraction). 

Note that, in our model, the underlying layer also has a continuous structure. However, we have 

incorporated into our model a similarity notion applied to a scale of coarser levels. This allows 

the consideration of the scale of resolutions (emanating from the continuous model). We will 

discuss the consequences of this structure later in this work.  

Our approach to scaled resolution is a way to state that two very close objects should be unified 

(i.e., clustered together) for certain purposes. Representation is conducted in a finite space; 

therefore, the acceptance of the existence of the multidimensional set 𝑉(𝑡) imposes pixelization, 

that is, it imposes a clustered structure on 𝑉(𝑡), in which every cluster represents a set of points 

joined together by proximity. The clusterization methodology is carried out by assembling 

together objects that are separated from one another by distances that are smaller than a given 

small, positive constant. We refer to this constant as the distinction constant. This small constant 

should represent, in our view, some fixed capacity for distinguishing between objects. As such, 

this constant is fixed and is not subject to change.  

On the basis of our manifold 𝑉(𝑡), we construct a finite set 𝑌 of elements, each representing a 

fixed-sized cluster of objects of 𝑉(𝑡). This means that two objects of 𝑉(𝑡) may belong to the 

same element in Y (making them indistinguishable) only if the distance between them is smaller 

than the distinction constant. It is easy to see, then, that the number of elements of 𝑌 intersecting 

a curve between two points in 𝑉(𝑡)is proportional to its length. As discussed above, the length of 

a trajectory is proportional to the attention focused on it.  



It should be noted that the clustering changes over time (as the metric changes). The following 

subsection is devoted to the formalization of this pixelization. 

2.3.1. Scaled resolution formalization 

A topological structure 𝑉(𝑡) representing the content of STM together with its metric was 

discussed above. In our view, the fact that the brain is a finite system suggests that we need to 

impose some form of discrete approximation on 𝑉(𝑡). Such an approximation is possible since 

𝑉(𝑡) is totally bounded. For 𝑉(𝑡) with its metric and for some 휀 > 0 (the distinction constant), 

there is some finite minimal cover of 𝑉(𝑡) by 휀-balls 𝑌 that we see as the set of representations at 

time 𝑡. 𝑌 = {𝑌𝑖(𝑡)} has a natural metric inherited from 𝑉(𝑡), which is known as the Hausdorff 

distance15. Note that the size of a ‘mistake’ in distance calculation between two points 𝑝, 𝑞 

of 𝑉(𝑡), that is, the difference between the two distances 𝑑(𝑝, 𝑞) and 𝑑𝐻(𝑌𝑝, 𝑌𝑞) is at most 2휀.  

Above, we defined attention density as the size of a volume element in 𝑉(𝑡). Meaning that the 

more a certain set is attended, the greater is its volume. As a result, the more a set is attended, the 

more clusters of 𝑌 are needed to cover it. Therefore, the greater the attention that is accorded to a 

set, the more Y elements will be included in it; that is, the greater the resolution will be. In cases 

in which every two points in 𝑉(𝑡) that differ only along a certain attribute 𝑒𝑖 are included in the 

same 휀 − 𝑏𝑎𝑙𝑙 (the length of the projection of 𝑉(𝑡) on 𝑒𝑖 is smaller than 휀), dimension reduction 

occurs (the clustered metric no longer depends on 𝑒𝑖).  

                                                           
15 The distance between two 휀-balls is the maximal distance between a point on one of the balls and the other ball. 



2.4. Concept representation  

2.4.1. Concept representation: Intuition and motivation 

As noted above, most metric-similarity models treat objects as points, while concepts are viewed 

as sets containing all possible manifestations of the relevant objects. In these models, both 

concepts and objects, (like the similarity itself), exist in LTM. Generally, these models do not 

specify a mechanism for computing distances between concepts (e.g. Shepard, 1987; Krumhansl, 

1978; Tversky & Krantz, 1970; Borg & Groenen, 2005). In our view, however, psychology-wise, 

the distinction between objects and concepts in LTM is not well defined. Many specific objects 

(psychology-wise) have attributes for which only a range of possible values is known (though 

not an exact value) or have a variety of manifestations (e.g., the same face with different make-

up, a different hair style, etc.) and should, therefore, be represented as sets.  

We express this idea by:  

1. Looking at LTM as a probability space (see “the role of probability” section below). 

According to this perspective, instead of a sharp distinction between concepts and objects in 

LTM, it is more appropriate to talk about a hierarchy of concepts (levels of abstraction), where 

even “specific objects” in LTM are characterized by a distribution of attributes values. This 

distribution represents a ‘chronic’ uncertainty (lack of knowledge) - even the most familiar 

‘objects’ (e.g. my dog) are not totally familiar (e.g. I don’t know my dog’s height to the 

millimeter). Therefore, we refer only to concepts in LTM, with varying level of specificity.  

2. When concepts are retrieved to STM, the uncertainty (regarding the attributes values) is 

expressed in our model by the fact that the elements of the set 𝑌 (the discrete approximation, see 

subsection 2.3.1) can never be single points. Another level of ‘acute’ uncertainty, is a function of 



attention as described above (a single cluster may include my dog only, or all the dogs in the 

world). 

In general, a concept will be any well-defined subset 𝐶 of LTM. On top of this, when we 

consider the metric in STM and its discrete approximation, Y, it follows that any concept (at any 

level of abstraction) may be represented in STM by a single element of the discrete 

approximation 𝑌. 

2.4.2. Concept representation in STM: Identification 

In this section, we explain in greater detail how a concept is represented during an identification 

task, that is, during any task requiring identification of a concept rather than differentiation 

between specific objects within a concept. Examples of such tasks include concept-instantiation 

searches (e.g., looking for any pen on your desk, or looking for the telephone in a hotel room) 

and similarity judgments between two concepts (e.g., the similarity between dogs and wolves). 

In all of these tasks, the important attributes are those that unite rather than differentiate 

individual instances of the concepts involved.  

Below, we briefly explain why the assumptions made in our model (particularly the assumption 

that two different points can be regarded as indistinguishable at a certain moment, i.e., finite 

resolution) lead to the conclusion that, in a concept identification tasks, the representation of the 

concept tends to be reduced to a single basic cluster (a single element of 𝑌). In addition, we 

provide a more accurate characterization of the effects of different attributes on the metric in 

concept-identification tasks. We then elaborate on and formalize this discussion.    

In STM, finite resolution leads to uncertainty. Thus, accurate identification of concepts requires 

resource allocation. As attentive load is finite, attention to a domain in the psychological space 



comes at the expense of other domains and attention to an attribute comes at the expense of other 

attributes. Due to the connection between attention and resolution, the same assertion can be 

applied to resolution quality. During a concept-identification task, resolution between two 

objects that undoubtedly belong to the concept is redundant. Thus, all of the ensemble of the 

concept’s objects will be represented together as a single cluster (within a single ‘pixel’, that is, 

an element of 𝑌).  

Below, we discuss probability in the semantic space. For the sake of simplicity, we first use the 

term in an intuitive manner. Later on, we will discuss this term in greater detail. As for attributes, 

attention to an attribute of a certain object in 𝑉(𝑡) is determined by its influence on the 

probability or the plausibility that the object represents the concept, given the values of the other 

attributes [coordinates in 𝑉(𝑡)]. The more an attribute influences the probability that an object 

represents the concept, the better the resolution along that attribute will be. This probability, in 

turn, depends heavily on the distribution of the attribute’s values within the concept. In general, 

the more the attribute varies between the different objects of the concept (e.g., the attribute 'color' 

for cars), the smaller its influence on the identification task.  

Finally, to avoid missing any concept manifestations, 𝑉(𝑡) must include all of the points with a 

positive probability of representing the concept. The volume of the set composed of these points 

is a function of the attention allocated to the identification task. 

2.4.2.1. The role of probability 

We start this subsection with a look at the metric during an identification task. Note that LTM as 

one’s database contains a lot of statistical information. For example, most dogs are between 30 

and 60 cm tall, pens are around 17 cm long and there are no blue mammals or mountains higher 



than Mount Everest. These pieces of data result from statistical accumulation of information and 

eventually comprise a person’s LTM. These facts are not influenced by attention. Nevertheless, 

statistical information has a strong influence on the way that objects are represented in STM. For 

instance, when I look for a pen on my desk, I search for an object that is between 10 and 20 cm 

long, because the probability of a pen being shorter or longer than those limits is very low. Since 

probability plays a key role in the representation of concepts, which, in turn, determines their 

similarity, we begin by laying the foundations for probability in a semantic space. Since LTM is 

the primary locus for probability (probability is information about objects and concepts), we 

begin by defining probability in LTM. We will then describe how probability is evaluated in 

STM and how it influences representation in STM.  

So far, we defined and discussed attributes only in STM. Note, however, that STM attributes 

often have counterparts in LTM. For example, I know that my father (a concept in LTM) is taller 

than my mother. This is information I have about my parents, therefore, it is part of my LTM. In 

LTM, attributes are random variables, functions from LTM to the real line (e.g., I know that 

about 70% of all people are shorter than my father). 

We look at LTM as a space-carrying probability distribution for a set of random variables (LTM 

attributes). This space consists of many basic concepts (my LTM contains all of the concepts I 

have come to know). The basic concepts of LTM are the ones that cannot be separated into more 

basic (‘smaller’) concepts. Therefore, they are disjoint (measurable) sets of LTM. Any LTM 

concept (whether basic, such as my neighbor’s dog or more abstract such as dog) inherits a 

probability distribution, which is the conditional probability (the random variables distribution 

given that the concept is 𝐶). This distribution is based on knowledge. A total lack of knowledge 

about the values of a certain variable for a concept 𝐶 is represented by a uniform marginal 



probability distribution of this variable (I have no idea about the speed of my neighbor’s dog, it 

may be any speed within a reasonable range); coming to know the concept better is represented 

as a ‘narrowing’ of the distribution (having seen that dog chasing a car, I’m 90% certain that its 

maximal speed is less than 30 mph).  

As was discussed above, both LTM and perception are sources of STM. Many tasks, such as 

categorization and identification, deal specifically with integration of these two sources. Note 

however, that elements of LTM (basic as they may be) when retrieved to 𝑉(𝑡) form sets in 𝑉(𝑡). 

For instance, I know the neighbor’s dog pretty well (in the framework of my LTM), but I have 

never noticed that it has a white spot on its tail (when considered in the framework of my STM). 

Nevertheless, this newly found spot does not prevent me from identifying the dog as the one 

belonging (in high probability) to my neighbor when I see it. Namely, the concept labeled as my 

neighbor’s dog is actually a set in 𝑉(𝑡) when retrieved to STM (for example, it contains dogs 

with and without a white spot on their tails).  

As noted, we define a concept as a well-defined subset of LTM (including single basic concepts). 

However, not all subsets of a concept have the same status. For example, most people find it 

easier to identify a German Shepherd as a dog, as compared to a Miniature Pinscher. In our 

construction, this is a result of probability considerations: For the concept dog, we have a 

random variable that yields probabilities of various dog breeds. Thus the probability that it is a 

German Shepherd is higher than the probability it is a Miniature Pinscher. Later on, this 

connection (between identification and probability) will be discussed and justified, but for now, 

we start by introducing the notion of conditional probabilities in LTM. 



As noted, given a concept, there is a distribution of random variables values (LTM attributes). 

This distribution can be interpreted as a conditional probability on the concept. Thus given the 

concept 𝐶 (e.g., dog), we may ask what the probability of a certain subset of 𝐶 is (e.g., German 

Shepherd), as defined by attributes’ values ranges (e.g., height between 50 and 60 cm, weight 

between 30 and 40 kg, etc.). 

Note that the conditional distribution that is relevant for identification tasks is not the probability 

of a subset of 𝐶 given the concept is 𝐶 (in LTM), but actually the opposite one. Namely, given a 

cluster 𝑐𝑙 in 𝑉(𝑡), what is the probability that this cluster represents a concept 𝐶? 

As discussed above, LTM is a source of STM. At Time 𝑡, we consider a subset 𝑆 of LTM that is 

retrieved to STM. We define a retrieval (set valued) function 𝜃: 𝑆 → 𝑉(𝑡) as follows: For 𝑠 ∈ 𝑆 

where 𝑠 is a basic concept, 𝜃(𝑠) is a subset of 𝑉(𝑡). Now, we can define another function 𝛺 on 𝑌 

(the collection of 𝑉(𝑡)’s clusters) that identifies, for a cluster 𝑐𝑙 in 𝑉(𝑡), all of the basic concepts 

in 𝑆 whose images intersect with 𝑐𝑙, namely: 

 𝛺(𝑐𝑙) = {𝑠 𝑓𝑜𝑟 𝑠 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜃(𝑠) ∩ 𝑐𝑙 ≠ ∅} . 

Generally, when there is no identification difficulty, 𝛺(𝑐𝑙) consists of a single concept. We 

define identification ambiguity as |𝛺(𝑐𝑙)| > 1. Namely, 𝑐𝑙 intersects the image of more than one 

concept. Note that when there is ambiguity about the cluster’s identity, the cluster may intersect 

the image of an LTM concept without including the concept’s image or being included in it. 

For example, I see an animal out of the corner of my eye (𝑐𝑙). It has the size and the color of my 

neighbor’s dog (𝑠1) and I do notice that the animal has a white spot on its tail. It may be my 

neighbor’s dog, so the intersection between the two sets is not empty (𝜃(𝑠1) ∩ 𝑐𝑙 ≠ ∅). 



However, the cluster 𝑐𝑙 representing the animal in 𝑉(𝑡) is not included in the image of my 

neighbor’s dog [e.g., the animal may be another dog (𝑠2)]. It also does not include the image of 

my neighbor’s dog (e.g., my neighbor’s dog may not have a white spot on its tail). 

Let 𝑥1, 𝑥2, . . , 𝑥𝑘, . . , 𝑥𝑛 be the coordinates (attributes) of 𝑉(𝑡). Without loss of generality, we 

assume that  𝑥1, 𝑥2, … , 𝑥𝑘 are the attributes of 𝑉(𝑡) with counterparts in LTM as random 

variables 𝑋1, 𝑋, … , 𝑋𝑘. The attributes 𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑛 are coordinates representing the 

perceptual attributes (e.g., the white spot on the tail of my neighbor’s dog).  

We define a projection 𝜓:𝑉(𝑡) → ℝ𝑘 as follows: For 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘, … , 𝑥𝑛), we define (𝑥) = 

(𝑥1, 𝑥2, … , 𝑥𝑘). For a cluster 𝑐𝑙, we get a set 𝜓(𝑐𝑙) in ℝ𝑘.  

Let 𝑆𝑐𝑙 be the union of the basic concepts in 𝛺(𝑐𝑙) as a probability space (the conditional 

probability): 𝑆𝑐𝑙 = ⋃ 𝐶𝑖𝜃(𝐶𝑖)∩𝑐𝑙≠∅
                                      (3) 

We define 𝑃(𝑐𝑙) as the joint probability of 𝑋1, 𝑋2, . . , 𝑋𝑘 on 𝜓(𝑐𝑙) (i.e., 𝑃((𝑋1, 𝑋2, . . , 𝑋𝑘) ∈

𝜓(𝑐𝑙))), when the probability is the one defined in the probability space 𝑆𝑐𝑙 and 𝑃(𝐶 𝑐𝑙⁄ ) is the 

joint probability of 𝑋1, 𝑋2, . . , 𝑋𝑘 defined for 𝜓(𝑐𝑙) ∩ 𝜓(𝜃(𝐶)) divided by 𝑃(𝑐𝑙), which is 𝑃(𝑋 ∈

𝜓(𝑐𝑙) ∩ 𝜓(𝜃(𝐶)))/ 𝑃(𝑐𝑙)  where 𝑋 = (𝑋1, 𝑋2, . . , 𝑋𝑘). 

Given that the concept is 𝐶, the probability of getting a value within the cluster = 𝑃(𝑐𝑙 𝐶⁄ ) is the 

joint probability of 𝑋1, 𝑋2, . . , 𝑋𝑘 defined for 𝜓(𝑐𝑙) ∩ 𝜓(𝜃(𝐶)) divided by 𝑃(𝐶), which is 𝑃(𝑋 ∈

𝜓(𝑐𝑙) ∩ 𝜓(𝜃(𝐶)))/𝑃(𝐶). 

We have then: 



 𝑃(𝑐𝑙 𝐶⁄ ) = 𝑃(𝑋 ∈ 𝜓(𝑐𝑙) ∩ 𝜓(𝜃(𝐶)))/𝑃(𝐶)                              (4) 

 𝑃(𝐶 𝑐𝑙⁄ ) = 𝑃(𝑋 ∈ 𝜓(𝑐𝑙) ∩ 𝜓(𝜃(𝐶)))/ 𝑃(𝑐𝑙)                           (5)  

2.4.2.2. The metric in an identification task 

Any uncertainty about whether an object in 𝑉(𝑡) is a member of a certain category (i.e., whether 

or not it represents the concept) comes from one of two possible sources: (1) uncertainty related 

to the point - object, which may be due to objective inaccessibility of relevant information (e.g., 

we see a person from behind) or due to lack of attention and (2) uncertainty about the concept, 

which may be objective, as when the category is not well-defined (has “fuzzy boundaries,” 

Zadeh LA, Fu KS, Tanaka K, Shimura M, eds. (1975); e.g., the concept “game”) or subjective, 

as when the subject is not sure about the category’s boundaries.  

Information about concepts is not attention-dependent, so uncertainty about the concept may be a 

property of LTM [as opposed to 𝑉(𝑡)]. Therefore, we will deal only with uncertainty about the 

point (inaccessibility or lack of attention as in Item 1 above). Namely, we consider only concepts 

that are ‘sharp’ in LTM. This uncertainty is expressed in our model by finite resolution and the 

clusters structure. For example, imagine that I am walking down my street at night when I briefly 

see a four-legged animal crossing the street. I can only see its size and get a vague idea of its 

form and gait. I do not know its color, whether it has a long or a short tail, or how big its ears are. 

Thus, essentially, it is represented by a cluster. Relying on the little information I have collected, 

I can now try to figure out what the animal may be (to associate it with a concept). My decision 

regarding its identity may be based on my knowledge about the cluster that represents it – a four-

legged animal with a flowing gait that is the size of a large dog that is often seen in my 

neighborhood. Note that once the cluster boundaries have been determined, the probabilities that 



it represents certain concepts are not attention-dependent (but rather statistically known). Thus, 

the contribution of attention to determining the probability that a cluster represents a candidate 

concept lies only in determining the boundaries of the cluster.  

Put more formally, for a concept 𝐶 in LTM and a cluster 𝑐𝑙 in 𝑉(𝑡), we are interested in two 

conditional probabilities: the probability of getting the attributes’ values within the cluster 𝑐𝑙, 

given that it is in the image of 𝐶 - 𝑃(𝑐𝑙/𝐶), and the probability that a given cluster 𝑐𝑙 will 

represent the concept 𝐶 - 𝑃(𝐶/𝑐𝑙). There is a natural connection between these two conditional 

probabilities that can be represented, in general, as:  

 𝑃(𝐶/𝑐𝑙) =
𝑃(𝑐𝑙/𝐶) ∙ 𝑃(𝐶)

𝑃(𝑐𝑙)⁄                                                                (6) 

where 𝑃(𝐶) is the probability of the concept 𝐶 and 𝑃(𝑐𝑙) is the probability of the cluster in the 

probability space 𝑆𝑐𝑙 defined above (formula (3) above).  

Next, we would like to discuss the optimal metric needed to identify a concept 𝐶. This metric, 

which is attention-dependent, will determine the boundaries of a cluster 𝑐𝑙 and, subsequently, the 

probability that it represents the concept 𝐶.  

Recall the example above, of the animal crossing the street. The cluster boundaries are built 

based on both inaccessibility of attributes’ values (it was dark, so I could not determine the 

animal’s color) and lack of attention (I could have made an effort to determine the animal’s size 

more accurately). Metric manipulation can improve resolution only along accessible attributes. 

For an inaccessible attribute, any two objects that differ only along this attribute will lie in the 

same cluster. Namely, the metric cannot be influenced by this attribute (regardless of attention). 



For example, if I am looking at pictures of flowers in a book, I cannot rely on my sense of smell 

to differentiate between two different flowers.  

Our discussion regarding concept representation during identification tasks is based on the 

assumption that the representation is dictated by two conflicting challenges: (1) conserving 

resources and (2) avoiding mistakes in identification.  

Our resource is resolution (recall that the number of clusters is limited). Therefore, in an 

identification task, resolution should be kept for distinguishing between objects that are 

associated with the concept and those that are not. For example, if we are looking for someone in 

a crowd and we know that that person is wearing a uniquely colored shirt, it would be an 

advisable strategy to focus on the color of the shirt. This is true even if we know what the person 

we are searching for looks like.  

We look at concept-instantiation search as the prototype of an identification task. For example, if 

I am on a safari and looking for an elephant, I do not know which attributes are going to be 

accessible. Nevertheless, while I am looking for an elephant, I keep a representation of the 

concept ‘elephant’ in mind, with which to compare candidate objects.  

Apparently, identification is often achieved based on very little information. For example, the 

presence of a trunk is almost sufficient to identify an animal as an elephant. However, such 

formative attributes are sometimes inaccessible (e.g., an elephant might turn its back to us). For 

this reason, each and every piece of information that can differentiate relevant objects from 

irrelevant objects is incorporated in an identification task (e.g., we do attend to size when trying 

to identify an elephant).  



As mentioned, the metric challenge during an identification task is to be economical, but still 

accurate. Namely, sharp resolution should be kept for instances in which it is necessary. The set 

of accessible attributes is not foretold. Therefore, a good strategy in an identification task would 

be metric dependence on an attribute regardless of the values of other attributes. 

Taking into account the discussion above, to achieve good identification, the general idea is as 

follows: The dependence of the metric on an attribute 𝑥𝑖 (e.g., height) at a point 𝑎 with a value 𝑎𝑖 

(e.g., 50 cm) on 𝑥𝑖 should be proportional to how much a small change in 𝑥𝑖 changes the 

probability of an object with a value 𝑥𝑖 = 𝑎𝑖 (and unknown values of other attributes) to 

represent the concept 𝐶 (e.g., dog). 

Let us assume that 𝑥𝑖 is the only accessible attribute during a task in which the concept 𝐶 has to 

be identified. For a small 𝛿 > 0, we define a set 𝛿𝑖,𝑎𝑖 = {𝑥 ∈ 𝑉(𝑡)| 𝑥𝑖 ∈ (𝑎𝑖 − 𝛿, 𝑎𝑖 + 𝛿)}
16. The 

set 𝛿𝑖,𝑎𝑖 includes all of the objects in 𝑉(𝑡) with a value close to 𝑎𝑖 on the coordinate 𝑥𝑖 (e.g., all 

the animals that are around 50 cm tall). Now, we can calculate the probability that the set 𝛿𝑖,𝑎𝑖 

represents the concept 𝐶 (e.g., given that an animal has a height of about 50 cm, what is the 

probability that it is a dog). This is achieved in the same way it was done for the cluster 𝑐𝑙 (see 

Formula 5). Namely, we refer to 𝛿𝑖,𝑎𝑖 as a cluster and the probability is given as 𝑃(𝐶/𝛿𝑖,𝑎𝑖) =

𝑃(𝛿𝑖,𝑎𝑖/𝐶) ∙ 𝑃(𝐶)
𝑃(𝛿𝑖,𝑎𝑖)
⁄ . Next, we define a function 𝐹𝐶𝑖: 𝑉(𝑡) → ℝ as follows: 

 𝐹𝐶𝑖(𝑎) = lim
𝛿→0

𝑃(𝐶/𝛿𝑖,𝑎𝑖)                                                                              (7) 

                                                           
16 Note that the value 𝛿 is not metric-dependent, since it is at the level of the chart; namely, it is the Euclidean 
measure of (𝑎𝑖 − 𝛿, 𝑎𝑖 + 𝛿). In the example above, for instance, 𝛿 may be 1 cm. It does not say anything about the 
metric (whether or not 1 cm has much of an effect on the similarity). 



(e.g., what is the probability that an animal whose height ‘approaches’ 50 cm is a dog). 

The quantity we tried to express in words earlier (the effect of a small change in 𝑥𝑖 on the 

probability that an object belongs to 𝐶) can now be expressed as 
𝜕𝐹𝐶𝑖

𝜕𝑥𝑖
. The desirable metric can 

now be optimally described by the concept-identification metric (involving the k attributes with 

counterparts in LTM). This metric is defined in a small neighborhood and we take 𝑎 as any point 

in that neighborhood.       

        𝑔𝐶(𝑎) = 𝐼𝐶 ∙

(

 
 
 
 
 
(
𝜕𝐹𝐶1(𝑎)

𝜕𝑥1
)
2

⋯ 0

⋮ ⋱ ⋮

0 ⋯ (
𝜕𝐹𝐶𝑘(𝑎)

𝜕𝑥𝑘
)
2

… ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0………… ⋯ 0
⋮ ⋱ ⋮

0………… ⋯ 0

0 … 0
⋮ ⋱ ⋮
0 … 0)

 
 
 
 
 

                                  (8) 

This metric roughly represents the allocation of attention to attributes, pertaining to their effect 

on the probability of an association with 𝐶. The distance between a point 𝐴 and a point 𝐵 that 

differ only in their values of 𝑥𝑖 represents the difference in the probability to be associated 

with 𝐶. 𝐼𝐶 represents the degree of attention toward the identification task. 

Note that there is a set 𝐶𝑆 included in 𝜃(𝐶) for which this matrix vanishes, namely, all diagonal 

elements in the above matrix are zero. We introduced above a set of 𝑘 attributes in 𝑉(𝑡) with 

counterparts in LTM. Often only a subset of those is accessible (e.g., in the dark, I cannot 

determine the color of the animal crossing my street). For any subset of accessible attributes, 

there is a set of points that are associated with the concept 𝐶 with maximal certainty. For any 

such subset of accessible attributes, this maximal certainty set includes 𝐶𝑆 (the set of vanishing 

metric).  



As stated above, the concept-identification metric is active in any task requiring identification of 

a concept (e.g., dog) rather than differentiation between specific sub-concepts (German 

Shepherd vs. Miniature Pinscher) within a concept. We look at 𝐶𝑆 as the representation 

of the concept 𝐶 in such tasks. 

Recall that: 

 𝐹𝐶𝑖(𝑎) = lim
𝛿→0

𝑃(𝐶/𝛿𝑖,𝑎𝑖) = lim𝛿→0
𝑃(𝛿𝑖,𝑎/𝐶) ∙ 𝑃(𝐶)

𝑃(𝛿𝑖,𝑎)
⁄ =𝑃(𝐶) ∙

lim
𝛿→0

𝑃(𝛿𝑖,𝑎/𝐶)

𝛿

lim
𝛿→0

𝑃(𝛿𝑖,𝑎)

𝛿

⁄ .   

The limit lim
𝛿→0

𝑃(𝛿𝑖,𝑎/𝐶)

𝛿
 is similar to the notion of a probability-density function of 𝑋𝑖 in 𝐶. 

From the definition of the concept-identification metric, it follows that, in general, the larger the 

range of 𝑋𝑖 values for the concept 𝐶, the smaller the attribute’s influence on the metric and the 

rougher its resolution. In cases in which any value is possible for a certain attribute, the attribute 

will not have any influence on the metric. 

Look, for example, at the following illustration describing two distributions:  

 

 



Dogs come in a wide variety of colors, so this attribute’s distribution is flat; whereas the 

distribution of the height is rather concentrated around some typical height. Accordingly, the 

graph of the functions 𝐹𝐶𝑖 and 𝐹𝐶𝑗, where 𝐶 stands for the concept dog and 𝑖 and 𝑗 are color and 

height respectively, are described in the following illustration. 

 

For a small range of height values (40 to 60 cm), the probability that an object is associated with 

the concept dog (given height only) does not change, even with respect to the possibility of other 

animals. Outside of this range, however, the probability depends heavily on height. For the 

attribute color, on the other hand, for practically the whole range, the probability does not 

change. It is clear that, in order to identify a dog, it is advisable to concentrate on height rather 

than color. 

Here is another example: Suppose we are looking for baby shoes. Since the size of the shoes has 

a limited range (i.e., baby shoes), a lot of attention is paid to this attribute and the metric, 

accordingly, depends sharply on this attribute. On the other hand, the color of the shoes has no 

particular value and, consequently, little or no attention needs to be paid to that attribute.  



Note that an interesting consequence of this process is dimension reduction. We have discussed 

this connection in detail, in identifying the concept C, in terms of the resolution along an 

attribute 𝑥𝑖 (which is closely related to the attribute’s influence on the metric) and the way the 

function 𝐹𝐶𝑖(𝑎) (roughly, the probability that a point with a value 𝑎𝑖 on 𝑥𝑖 represents the 

concept 𝐶) varies along that attribute. It follows that for an attribute 𝑥𝑖 for which 
𝜕𝐹𝐶

𝜕𝑥𝑖
= 0 

anywhere (an attribute not bearing on the concept’s identification), we get 𝑔𝐶𝑖𝑖 = 0, which 

means that the metric does not depend on 𝑥𝑖. Thus, we see dimension reduction of a vicinity of 

STM. The implication is that the concept is associated with a vicinity of lower dimension in 

STM. 

2.5. Classification  

Above, we dealt in detail with identification tasks. We now move on to a discussion of 

classification tasks.  

Classification tasks can be carried out in a laboratory (Vriezen, Moscovitch & Bellos, 1995; 

Deng, & Sloutsky, 2015; Hoffman & Rehder, 2010; Yamauchi & Markman, 1998) or in a real-

world setting. In a typical laboratory classification task, the subject is presented with an object 

and is asked to classify it into one of several predefined categories. Note that a real-world 

classification task is quite different. In a real-world classification task, the presented object is 

either recognized or is not recognized by the subject as representing a concept. This means that 

in real-world classification tasks: (a) there are no predefined choices (to check the object 

against); (b) we are dealing with concepts rather than arbitrary categories and (c) any number of 

“right” choices is possible (including zero). In the discussion below, we focus on real-world 

classification tasks. 



We discussed above the representation of a concept in an identification task. Note that 

classification and identification, though closely related, are different tasks. In an identification 

task, the concept is represented a priori (e.g., I am on a safari looking for an elephant). In a 

classification task, on the other hand, the candidate categories are chosen in response to a 

perceived object and are assessed against it (e.g., on the safari, I see an animal and have to decide 

what it is). In particular, this means that the set of accessible attributes is given. 

For example, I enter a room and find there a new object, which I have never seen before. 

Nevertheless, I know that this is a chair. I was not expecting to see the chair and so the metric 

was not modified to identify a chair.  

Yet, another scenario is also possible: I entered the room, saw the chair and could not recognize 

it as a chair because it was not at all similar to the other chairs with which I am familiar. On the 

other hand, if I had looked for a chair (identification task), maybe I would have noticed that this 

object is good to sit on (I would have used the identification metric discussed above) and could 

have recognized it as a chair. 

This example highlights two things about classification. First, classification depends on the 

metric in use, at the moment, in STM. Second, it is widely accepted that classification depends 

on the similarity of the classified object to other objects representing the candidate concept 

(exemplars and/or prototype).  

2.5.1. Classification as a process 

Classification, then, is clearly a process. This process is a composition of two sub-processes. One 

sub-process involves testing the suitability of the classified object to a certain concept with the 

metric at hand (e.g., to what degree is the object I see now similar to chairs I have known). The 



first concept to test the object against is the one with the highest probability of being associated 

with the object, with respect to the given metric. The second sub-process involves the constant 

changing of the metric to suit the identification of the candidate concept (e.g., I see an object and 

modify the metric to determine whether that object is a chair). 

During the process, the similarity of the classified object to other objects representing the 

candidate concept determines how the metric changes. In turn, the metric is used to compute the 

similarity of the classified object to other objects representing the candidate concept.  

Staying with the example above, let us consider an object that I see. If it looks similar to chairs I 

have seen before, I will tend to pay more attention to those attributes that define chair; meaning 

that the metric changes toward being the one used for the identification of the concept chair. 

Suppose that the relevant attributes are: how comfortable the object is to sit on, the extent to 

which the object seems to have been made for the purpose of sitting and how portable the object 

is. Now, I am examining the object in the light of these attributes. If it is compatible with the 

representation of a chair, I will classify it as a chair. In other words, it will be included in the 

cluster representing the abstract concept of a chair (see the identification metric; Formula 8 

above). In contrast, it is probable that by considering the attributes above, I will conclude that, 

while looking like a chair, the object should not be classified as a chair (e.g., it is not suitable to 

sit on or is not man-made). Since, in our construction, the metric changes continuously over 

time, a process is considered as evolving in time, rather than as a time-independent, discrete 

assessment.   



2.5.2. Classification as an asymptotic process 

We look to classify an observed Object 𝑥 in terms of familiar concepts. First, a candidate concept 

𝐶 is chosen, according to the probability that it is associated with the object 𝑥. Then comes a 

process in which the proximity of the object to samples of (namely basic concepts associated 

with) the candidate concept 𝐶 determines how the metric will evolve. In turn, the evolving metric 

signifies the above proximity. Therefore, it is natural to describe this process as a time variation 

of the metric imposed in 𝑉(𝑡). The process of classification should be performed within a limited 

time frame 𝑇0. Therefore, it can be best described as an asymptotic process in which the 

evolution of 𝑔 as 𝑡 → 𝑇0 is given by 𝐹(𝑔(𝑥,𝑡),𝑥), where the independent variable is Time, 𝑡, and 𝑥 

(the object) is a parameter. When the observed relevant attribute values are fed into the 

function 𝐹, they generate a modification of the metric. Thus, if the distances between 𝑥 and 

certain exemplars of the candidate concept are diminishing, then 𝑔(𝑥,𝑡) is approaching a 

‘verification metric’ that will allow the object to be identified as being associated with the 

concept 𝐶.  

To be more precise, we see the classification process as composed of a) choosing a candidate 

concept 𝐶 (the concept with the highest probability of being associated with the object 𝑥) and b) 

verification of whether the object 𝑥 really is associated with 𝐶. A classification task may include 

several of these verification cycles. 

We now address in greater detail the way in which the attribute values of 𝑥 are fed into 𝐹 in the 

verification process. Recall our reference to the fact that the proximity of the classified object to 

exemplars of the concept 𝐶, at the beginning of the classification process, determines how the 

metric will evolve. However, the proximity of 𝑥 to these exemplars is rather obscure (i.e., which 



exemplars to consider, how the distances between x and these exemplars are summed, etc.). 

Therefore, it makes sense to also consider the probability that the cluster 𝑐𝑙𝑥 that includes the 

object 𝑥 represents the concept 𝐶 (see Formula 6 above). The probability we are interested in, 

then, is 𝑃(𝐶/𝑐𝑙𝑥). Note that this probability strongly depends on the metric 𝑔(𝑥,𝑡), since it is 

determined by the cluster boundaries which, in turn, are determined by the metric.  

For example, suppose that at a certain moment, while seeing a Miniature Pinscher, I am more 

focused on its size and speed than on other features, such as its gait and shape. This means that 

different animals, which are similar in their size and speed, may be indistinguishable to me at 

that moment17. This may lead to the false classification of the Miniature Pinscher as a cat, since 

based on speed and size alone, the probability that the animal is a cat is greater than the 

probability that it is a dog. A closer look is often needed for better classification in cases like this 

one. 

Note that in a classification task, as opposed to an identification task (as defined above), the set 

of accessible attributes is predetermined. By set of accessible attributes we mean those 

accessible attributes 𝑥1, 𝑥2, … , 𝑥𝑚 with counterparts in LTM (e.g., the size and the color of the 

object that may be a chair), namely the random variables 𝑋1, 𝑋2, … , 𝑋𝑚 about which I have 

information. The counterparts 𝑥𝑚+1, 𝑥𝑚+2, … , 𝑥𝑘 of the random variables 𝑋𝑚+1, 𝑋𝑚+2, … , 𝑋𝑘 are 

inaccessible (e.g., the weight of the object before I tried to lift it) and, therefore, every two points 

that differ only along attributes of the latter set lie within the same cluster. 

We defined (in Section 2.4.2.1) the projection 𝜓: 𝑉(𝑡) → ℝ𝑘 as 𝜓(𝑥) = (𝑥1, 𝑥2, … , 𝑥𝑘) for 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛), which maps 𝑥 to an array of random variable values. We now define similarly a 

                                                           
17 Namely, their images in 𝑉(𝑡) lie in the same cluster. 



projection 𝜓′: 𝑉(𝑡) → ℝ𝑚 as 𝜓′(𝑥) = (𝑥1, 𝑥2, . . , 𝑥𝑚) for the set of accessible attributes (a subset 

of the k variables with counterparts in LTM). Namely, the image of the object 𝑥 (e.g., the object 

that might be a chair) is an array indicating 𝑥’s values on the accessible attributes only (e.g., 

color, shape, size, etc.). Here, 𝑥 is the object that is being classified, which determines the cluster 

𝑐𝑙𝑥 (𝑥 ∈ 𝑐𝑙𝑥 ⊂ 𝑉(𝑡)). The sets 𝜓′ (𝜃(𝐶𝑖)) for 𝐶𝑖 ∈ 𝛺(𝑐𝑙𝑥) are the images in ℝ𝑚 of candidate 

basic concepts to be represented by 𝑥. Note that these images are not necessarily disjoint any 

more (as opposed to the sets 𝜓 (𝜃(𝐶𝑖))). It forces us to consider the probabilistic structure that 

has been established above (see Section 2.4.2.1). We use Formula 5 for the probability of the 

cluster 𝑐𝑙𝑥 to represent the concept 𝐶. Now, 𝜓′(𝑐𝑙𝑥) replaces 𝜓(𝑐𝑙𝑥). The only difference is that 

now we have fewer random variables, meaning that the 𝜓′ (𝜃(𝐶𝑖)) are not necessarily disjoint 

any more.  

Since 𝜓′ (𝜃(𝐶𝑖)) are not disjoint, even for a single point 𝑥 of 𝑉(𝑡) there is no certainty with 

which basic concept 𝑥 is associated. We define then, for a concept 𝐶, a function 𝐹𝐶: 𝑉(𝑡) → ℝ 

as 𝐹𝐶(𝑥) = lim
𝛿→0

𝑃(𝐶 𝐵𝛿(𝑥)
⁄ ) 18. [𝐹𝐶(𝑥) is the limit probability that a small set around the point 𝑥 

of 𝑉(𝑡) is associated with the concept 𝐶.] 

Next, we define a verification metric that is closely related to the identification metric above 

(Formula 8). The difference is that now the set of accessible attributes has been predetermined. 

Going back to to the example above, I enter a room and see an object that might be a chair. I do 

                                                           
18 Note that𝐹𝐶(𝑥) = lim

𝛿→0
𝑃(𝐶 𝐵𝛿(𝑥)

⁄ ) does not depend on the metric, since lim
𝛿→0

𝑃(𝐶 𝐵𝛿(𝑥)
⁄ ) = 𝑃(𝐶) ∙

lim (

𝑃(
𝐵𝛿

𝐶⁄ )

𝜇(𝐵𝛿)
⁄

𝑃(𝐵𝛿)
𝜇(𝐵𝛿)
⁄

𝛿→0

=
lim
𝛿→0

𝑃(
𝐵𝛿

𝐶⁄ )

𝜇(𝐵𝛿)
⁄

lim
𝛿→0

𝑃(𝐵𝛿)
𝜇(𝐵𝛿)
⁄

. Here, 𝜇(𝐵𝛿) is the Euclidean measure of 𝐵𝛿 . The limits lim
𝛿→0

𝑃 (
𝐵𝛿
𝐶⁄ )

𝜇(𝐵𝛿)
⁄   

dnd  lim
𝛿→0

𝑃(𝐵𝛿)
𝜇(𝐵𝛿)
⁄  do exist and do not depend on the metric. (This is our assumption when we consider the 

joint probability.)  



have information about the object: its size, its shape and so forth. The probability that the object 

is a chair can now be calculated (see Formula 6 above) based on the cluster’s boundaries. These 

boundaries are determined based on the values of the object’s attributes and the metric at hand. 

The metric can now be modified to represent probability differences between objects. Namely, 

the greater the difference between two objects of 𝑉(𝑡) in terms of their probability of being 

associated with the concept 𝐶, the greater the distance between them. In particular, the metric 

should clearly distinguish between objects that are undoubtedly associated with the concept 𝐶 

and objects that are undoubtedly not associated with that concept. If the object 𝑥 is a chair, 

judged with the verification metric, it should be ‘distant’ from the images of other concepts (e.g., 

table or closet). 

Here again, for a point 𝑥, the dependence of the metric on an attribute 𝑥𝑖 should express how 

much 𝐹𝐶(𝑥) changes along the attribute 𝑥𝑖 around the point 𝑥. Recall that 𝐹𝐶(𝑥) is the limit 

probability for a small neighborhood around an object 𝑥 to represent the concept 𝐶. This is 

expressed as 
𝜕𝐹𝐶(𝑥)

𝜕𝑥𝑖
, which represents the rate of change of 𝐹𝐶 along the attribute 𝑥𝑖. 

The verification metric, then, is given as: 

 𝑔𝑉𝐶(𝑥) =

𝜕𝐹𝐶(𝑥)

𝜕𝑥1

2

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝜕𝐹𝐶(𝑥)

𝜕𝑥𝑚

2
                   (10) 

This metric is not time-dependent. Like the identification metric, it is an ad hoc metric used for 

the verification task. Note that 𝑔𝑉𝐶 defined in this way degenerates in the interior of 𝜃(𝐶). More 

specifically, if 𝑧 and 𝑦 are in the interior of 𝜃(𝐶), then the distance between them, as determined 



by 𝑔𝑉𝐶, is very close to zero. On the other hand, if 𝑧 is in the interior of 𝜃(𝐶) while 𝑦 is on the 

exterior, then the distance between them is very large. 

As mentioned above, a classification task may include several cycles of verification, in cases 

where 𝛺(𝑐𝑙𝑥) (the set of concepts that their images intersect the cluster 𝑐𝑙𝑥) contains more than 

one concept. For example, when I see the Miniature Pinscher, at first, I think it is a cat. I look 

more attentively, which means that I activate the verification metric for the concept cat. I then 

reject the concept cat and check the object against the concept dog and find a match, which 

means that with the verification metric of the concept dog I get a probability close to 1 that the 

cluster 𝑐𝑙𝑥, which includes the object 𝑥, is associated with the concept dog. 

Below, we describe the verification process in more detail. 

For the sake of simplicity, we start with a case in which 𝛺(𝑐𝑙𝑥) contains a single concept 𝐶 (e.g., 

the object that may or may not be a chair, but is definitely not any other concept I know). The 

classification process can be described by the rate of vanishing or divergence of 

 |𝑔(𝑥,𝑡) − 𝑔𝑉𝐶(𝑥)| as 𝑡 approaches some upper time limit 𝑇0
19 (i.e., how fast I move to judge the 

object in view of the relevant attributes, for example, the degree to which the object is 

comfortable to sit on). 

The convergence rate of 𝑔(𝑥,𝑡)𝑖,𝑗 − 𝑔𝑉𝐶𝑖𝑗(𝑥) is represented as: 𝐹𝑖𝑗 (𝑃 (
𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) , 𝑔𝑉𝐶(𝑥)), 

where 𝐹𝑖𝑗 is a complex function that cannot be defined should be characterized empirically.   

                                                           
19𝑇0 is the upper limit  of the timeframe for classification, mentioned above. 



Here, 𝑐𝑙𝑥 is the cluster that contains the object 𝑥. The functions 𝐹𝑖𝑗 (for any element 𝑖𝑗 of the 

matrix) express faster convergence of 𝑔 to 𝑔𝑉𝐶𝑖𝑗 as 𝑃(𝐶/𝑐𝑙𝑥(𝑔(𝑥, 𝑡))) grows. Namely, the larger 

the probability that the classified object 𝑥 is associated with 𝐶, the faster 𝑔(𝑥,𝑡) will converge 

to 𝑔𝑉𝐶. If 𝑥 is associated with 𝐶, as 𝑔(𝑥,𝑡) converges to 𝑔𝑉𝐶, 𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) will grow20 and 

the convergence of 𝑔(𝑥,𝑡) to 𝑔𝑉𝐶 will be accelerated via a positive feedback mechanism. If 𝑥 is 

not associated with 𝐶, the movement of 𝑔(𝑥,𝑡) toward 𝑔𝑉𝐶 will cause 𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) to 

decrease and, as a result, the movement of 𝑔(𝑥,𝑡) toward 𝑔𝑉𝐶 will be reversed and 𝑔(𝑥,𝑡)  will 

diverge from 𝑔𝑉𝐶. 

Note that the greater the similarity (the shorter the distance) of 𝑥 to other objects representing 𝐶 

(exemplars), the larger 𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ )  will get. 

The process above can be described as asymptotic convergence: 

 |𝑔(𝑥,𝑡)𝑖,𝑗 − 𝑔𝑉𝐶𝑖𝑗(𝑥)| = 𝑂((𝑇0 − 𝑡)
𝛼𝑖𝑗) as 𝑡 approaches 𝑇0 where 𝛼𝑖𝑗 is determined by 𝐹𝑖𝑗. 

 

                                                           
20 Note that the boundaries of 𝑐𝑙𝑥  and thus 𝑃(𝐶/𝑐𝑙𝑥(𝑔(𝑥, 𝑡))) depend on the metric. 

 



2.5.3. Termination of the process of verification 

Let the beginning of the verification process be at Time 𝑡 = 0. If at 𝑡 = 𝑡0 > 0, 𝑔(𝑥, 𝑡) gets close 

enough to 𝑔𝑉𝐶 while 𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) crosses some certainty threshold, then 𝑥 will be 

classified as associated with 𝐶. It follows that in a case in which 𝑥 is associated with 𝐶, 𝑡0 is 

determined by 𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) and 𝑔 at Time 0 (the beginning of the verification process). 

Namely, the larger 𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) is, given the metric at the beginning of the process, and 

the closer 𝑔 is to 𝑔𝑉𝐶 , the smaller 𝑡0 will be. This means that the more ‘typical’ 𝑥 is (the greater 

its similarity to exemplars of 𝐶), the faster the verification process will be.  

If at any time 𝑡, 𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) decreases, then the verification process will terminate, 𝑥 

will not be classified as associated with 𝐶 and another concept will be tested for verification. In a 

classification task involving several candidate concepts, the concept 𝐶 for which 

𝑃 (𝐶
𝑐𝑙𝑥(𝑔(𝑥, 0))
⁄ ) is the largest is the one chosen to initiate the verification process for the 

object 𝑥. 

Let us look at a simplified example of a verification process: I see a ball and I am not sure 

whether it is a soccer ball or a volleyball. I think that it is the type of ball used to play soccer. 

This type of ball is slightly bigger and its surface is smoother than that of a volleyball. And so 

the verification process begins. For the sake of simplicity, we ignore objective uncertainty and 

assume that uncertainty is caused only by poor resolution. So, in this example, 𝐶 is a soccer ball, 

𝑥 is the ball I hold in my hand and 𝑥 ∈ 𝜃(𝐶).  



For the sake of simplicity, we make the following assumptions: First, since I know that the object 

I hold in my hand is a ball, 𝛺(𝑐𝑙𝑥) contains only balls, so the relevant probability subspace of 

LTM - 𝑆𝑐𝑙 (see Formula 3) is the subspace of balls (which means that shape is not an attribute 

in 𝑆𝑐𝑙). For convenience, we assume that 𝑉(𝑡) consists of balls only at Time 𝑡, so the shape is a 

degenerate attribute, which means that only one value for this attribute exists in 𝑉(𝑡). Second, 

the only attributes relevant to determining whether the ball is a soccer ball are its size and the 

smoothness of its surface. Note that since there is no objective uncertainty (but only limited 

resolution expressed by the clusters structure), the image of a soccer ball and the image of a 

volleyball are disjointed.  

Recall that:  

1. The verification metric 𝑔𝑉𝐶 defined in this way degenerates in the interior of 𝜃(𝐶). More 

specifically, if 𝑧 and 𝑦 are in the interior of 𝜃(𝐶), then the distance between z and y, as 

determined by 𝑔𝑉𝐶, is very close to zero. On the other hand, if 𝑧 is in the interior of 𝜃(𝐶) 

while 𝑦 is on the exterior, then, because there is no objective uncertainty, by definition, 

the distance between z and y approaches infinity as 𝑔 approaches 𝑔𝑉𝐶. 

2.  𝑐𝑙𝑥 is an ε −ball with respect to the metric 𝑔(𝑥, 𝑡).  

3. By Formula 5: 𝑃(𝐶 𝑐𝑙⁄ ) =
𝑃(𝑋∈𝜓(𝑐𝑙)∩𝜓(𝜃(𝐶)))

𝑃(𝑋∈𝜓(𝑐𝑙))
. 

For the limit metric 𝑔𝑉𝐶, for any point p such that 𝑝 ∈ 𝑉(𝑡)\𝜃(𝐶), we get 𝑝 ∉ 𝐵 (𝑔𝑉𝐶(𝑥)) =

𝑐𝑙𝑥(𝑔𝑉𝐶(𝑥)), while, on the other hand, 𝜃(𝐶) ⊆ 𝑐𝑙𝑥(𝑔𝑉𝐶(𝑥)), which indicates perfect separation. 

We assume, then, that 𝜃(𝐶) for any 𝑔 close enough to 𝑔𝑉𝐶 is also a ball with 𝑥 as its center, 

so 𝑃 (𝜓 (𝑐𝑙𝑥(𝑔(𝑥, 𝑡)))) = 𝑃 (𝜓(𝜃(𝐶))) + 𝑃 (𝜓 (𝑐𝑙𝑥(𝑔(𝑥, 𝑡))) \𝜓(𝜃(𝐶))). Therefore, 



 𝑃 (𝐶 𝑐𝑙𝑥
⁄ ) = 1 − 𝑃 (𝜓 (𝑐𝑙𝑥(𝑔(𝑥, 𝑡))) \𝜓(𝜃(𝐶))). We assume that there is some density 

function 𝑓 and a measure 𝜇 in ℝ2 such that 𝑃 (𝜓 (𝑐𝑙𝑥(𝑔(𝑥, 𝑡))) \𝜓(𝜃(𝐶))) =

∬ 𝑓
𝜓(𝑐𝑙𝑥(𝑔(𝑥,𝑡)))\𝜓(𝜃(𝐶))

𝑑𝜇 = ∫ 𝑓/√|𝑑𝑒𝑡 𝑔 (𝑥, 𝑡 )|
𝑐𝑙𝑥(𝑔(𝑥,𝑡))\𝜃(𝐶)

𝑑𝑥 

for any 휀′ > 0 there is 𝛿 > 0 such that when  

 |𝑔 − 𝑔𝑉𝐶| < 𝛿, we get 1 − 𝑃 (𝐶 𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) < 휀′. 

Therefore, 𝑃 (𝐶 𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) increases as |𝑔 − 𝑔𝑉𝐶| decreases. It is reasonable, then, for the 

sake of our simple example, to assume that21 𝑃 (𝐶 𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) = 1 − |𝑔(𝑥, 𝑡) − 𝑔𝑉𝐶(𝑥)|. The 

convergence of 𝑔(𝑥,𝑡)𝑖,𝑗 to 𝑔𝑉𝐶𝑖𝑗 at a rate that is inversely related to 𝑃 (𝐶 𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) can be 

depicted in the following specific equation 
𝜕|𝑔(𝑥,𝑡)𝑖,𝑗−𝑔𝑉𝐶𝑖𝑗

(𝑥)|

𝜕𝑡
= −

1

1−𝑃(𝐶
𝑐𝑙𝑥(𝑔(𝑥,𝑡))
⁄ )

=

1/−|𝑔 − 𝑔𝑉𝐶| where 𝐹𝑖𝑗 (𝑃 (
𝐶
𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) , 𝑔𝑉𝐶(𝑥)) = −

1

1−𝑃(𝐶
𝑐𝑙𝑥(𝑔(𝑥,𝑡))
⁄ )

= 1/−|𝑔 − 𝑔𝑉𝐶|.  

In this equation, the closer 𝑃 (𝐶 𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) is to 1, the more negative the time derivative 

of |𝑔(𝑥,𝑡)𝑖,𝑗 − 𝑔𝑉𝐶𝑖𝑗(𝑥)|. For further simplicity, we take 𝑔(𝑥,𝑡) to be diagonal with 𝑔(𝑥,𝑡)1,1 =

𝑔(𝑥,𝑡)2,2 at any 𝑡.  

                                                           
21 To make things simpler, we included many approximations and inaccuracies in this example. Note that according 

to the way we developed the formula for the probability 𝑃 (𝐶 𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ), it does depend on the metric. But, 

here, we take the liberty to assume that it depends only on the metric at 𝑥. Nevertheless, in principle, this formula 
seems reasonable. 



The solution of this equation is |𝑔(𝑥,𝑡)𝑖,𝑗 − 𝑔𝑉𝐶𝑖𝑗(𝑥)| = √2𝑇 − 2𝑡, where 𝑇 is a constant smaller 

than 𝑇0. 𝑇 is determined by the initial conditions (i.e., the metric and the probability that 𝑥 is 

associated with 𝐶, at the beginning of the verification process). As can be seen, as 𝑡 

approaches 𝑇, 𝑔(𝑥,𝑡)𝑖,𝑗 approaches 𝑔𝑉𝐶𝑖𝑗(𝑥) at an increasing rate. In turn, 𝑃 (𝐶 𝑐𝑙𝑥(𝑔(𝑥, 𝑡))
⁄ ) 

approaches 1. The smaller 𝑇 is, the faster the verification process will progress.  

3. The Model: Summary  

We propose a novel model of similarity in which STM can be visualized as a (multidimensional) 

flexible sheet (the ‘patch’) with coordinates drawn on it. This flexible sheet can be stretched over 

different domains and in different directions, resulting in varying representations. The sheet 

moves continuously with respect to time. Finally, the accessible information is a discrete 

approximation of this flexible sheet. In particular, we tried to demonstrate how the task at hand 

dictates the representation and, thus, the metric. 

We believe that this view of similarity may serve to defend the metric approach. Criticisms of 

the metric (Tversky 1977, Tversky & Gatti 1978, Tversky & Gatti 1981) approach for similarity 

modeling derive mostly from the evident violations of metric axioms, which, in general, make 

the metric approach psychologically inaccurate. We tackle this problem by incorporating the 

LTM- STM distinction. We assume that varying representation occurs in STM, which is, in our 

view, the metric environment in which similarity operates, while LTM is a (non-metric) 

probability space which functions as database and in which similarity is irrelevant. In this way, 

we avoid previously studied violations of those metric axioms that deal with multiple distances, 

‘calculated’ in different contexts. 



 

References  

Aguilar, C. M., & Medin, D. L. (1999). Asymmetries of comparison. Psychonomic Bulletin & 

 Review, 6(2), 328-337. 

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological 

 review, 93(2), 154.  

Baddeley, A. D., & Warrington, E. K. (1970). Amnesia and the distinction between long-and 

 short-term memory. Journal of verbal learning and verbal behavior, 9(2), 176-189. 

Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. 

 Springer Science & Business Media. 

Buchsbaum, B. R., Padmanabhan, A., & Berman, K. F. (2011). The neural substrates of 

 recognition memory for verbal information: spanning the divide between short-and 

 long-term memory. Journal of Cognitive Neuroscience, 23(4), 978-991. 

Corkin, S. (2002). What's new with the amnesic patient H.M.? Nature Reviews Neuroscience, 

 3, 153–160. 

Deng, W. S., & Sloutsky, V. M. (2015). The development of categorization: effects of 

 classification and inference training on category representation. Developmental 

 Psychology, 51(3), 392. 

Dzhafarov, E. N., & Colonius, H. (1999). Fechnerian metrics in unidimensional and 

 multidimensional stimulus spaces. Psychonomic bulletin & review, 6(2), 239-268. 

Fung, L. W., & Fu, K. S. (1975). An axiomatic approach to rational decision making in a  fuzzy 

 environment. In Fuzzy sets and their applications to Cognitive and decision 

 processes (pp. 227-256). Academic Press. 

Hahn, U. (2014). Similarity. Wiley Interdisciplinary Reviews: Cognitive Science, 5(3), 271-280. 



Hoffman, A. B., & Rehder, B. (2010). The costs of supervised classification: The effect of 

 learning task on conceptual flexibility. Journal of Experimental Psychology: 

 General, 139(2), 319. 

Jäkel, F., Schölkopf, B., & Wichmann, F. A. (2008). Similarity, kernels, and the triangle 

 inequality. Journal of Mathematical Psychology, 52(5), 297-303. 

Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: 

 The interrelationship between similarity and spatial density. 

Laub, J., Müller, K. R., Wichmann, F. A., & Macke, J. H. (2006). Inducing metric violations in 

 human similarity judgements. Advances in neural information processing systems, 19. 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification 

 learning. Psychological review, 85(3), 207. 

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological 

 review, 100(2), 254. 

Nachshon, Y., Cohen, H. & Maril, A. (2022). Semantic distance- justification and limitations. In 

preparation. 

Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization 

 relationship. Journal  of experimental psychology: General, 115(1), 39. review,  93(2), 

 154. 

Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. Annual review of 

 Psychology, 43(1), 25-53. 

Shepard, R. N. (1987). Toward a universal law of generalization for psychological 

 science. Science, 237(4820), 1317-1323.  

Squire, L. R. (2009). Memory and brain systems: 1969–2009. Journal of Neuroscience, 29, 

 12711–12716. 



Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian 

 inference. Behavioral and brain sciences, 24(4), 629-640. 

Townsend, J. T., Burns, D., & Pei, L. (2013). The prospects for measurement in infinite-

 dimensional psychological spaces. Measurement with Persons, 143-174. 

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.  

Tversky, A., & Gati, I. (1978). Studies of similarity. In E. Rosch & B. B. Loyd (Eds.), 

 Cognition and categorization (pp. 79-98). Hillsdale, NJ: L. Erlbaum. 

Tversky, A., & Gati, I. (1982). Similarity, separability, and the triangle inequality. 

 Psychological Review, 89(2), 123–154.  

Tversky, A., & Krantz, D. H. (1970). The dimensional representation and the metric structure of 

 similarity data. Journal of mathematical psychology, 7(3), 572-596. 

Vallar, G., & Baddeley, A. (1984). Fractionation of working memory: Neuropsychological 

 evidence for a phonological short-term store. Journal of Verbal Learning and Verbal 

 Behavior, 23, 151–161. 

Voorspoels, W., Vanpaemel, W., & Storms, G. (2011). A formal ideal-based account of 

 typicality. Psychonomic bulletin & review, 18(5), 1006-1014. 

Vriezen, E. R., Moscovitch, M., & Bellos, S. A. (1995). Priming effects in semantic 

 classification tasks. Journal of Experimental Psychology: Learning, Memory, and 

 Cognition, 21(4), 933. 

Warrington, E., & Shallice, T. (1969). Selective impairment of auditory verbal short-term 

 memory. Brain, 92, 885–896. 

Yamauchi, T., & Markman, A. B. (1998). Category learning by inference and 

 classification. Journal of Memory and language, 39(1), 124-148. 

Yearsley, J. M., Barque-Duran, A., Scerrati, E., Hampton, J. A., & Pothos, E. M. (2017). The 

 triangle inequality constraint in similarity judgments. Progress in biophysics and 

 molecular biology, 130, 26-32. 


